The Goto Numbers of Parameter Ideals

نویسنده

  • WILLIAM HEINZER
چکیده

Let Q be a parameter ideal of a Noetherian local ring (R, m). The Goto number g(Q) of Q is the largest integer g such that Q : m is integral over Q. We examine the values of g(Q) as Q varies over the parameter ideals of R. We concentrate mainly on the case where dimR = 1, and many of our results concern parameter ideals of a numerical semigroup ring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-socle Ideals and Goto Numbers of Parameters

Goto numbers g(Q) = max{q ∈ Z | Q : m is integral overQ} for certain parameter ideals Q in a Noetherian local ring (A,m) with Gorenstein associated graded ring G(m) = ⊕ n≥0 m /m are explored. As an application, the structure of quasisocle ideals I = Q : m (q ≥ 1) in a one-dimensional local complete intersection and the question of when the graded rings G(I) = ⊕ n≥0 I /I are Cohen-Macaulay are s...

متن کامل

Goto Numbers of a Numerical Semigroup Ring and the Gorensteiness of Associated Graded Rings

The Goto number of a parameter ideal Q in a Noetherian local ring (R, m) is the largest integer q such that Q : m is integral over Q. The Goto numbers of the monomial parameter ideals of R = k[[x1 , x2 , . . . , xν ]] are characterized using the semigroup of R. This helps in computing them for classes of numerical semigroup rings, as well as on a case by case basis. The minimal Goto number of R...

متن کامل

The Index of Reducibility of Parameter Ideals in Low Dimension

In this paper we present results concerning the following question: If M is a finitely-generated module with finite local cohomologies over a Noetherian local ring (A,m), does there exist an integer l such that every parameter ideal for M contained in m has the same index of reducibility? We show that the answer is yes if dimM = 1 or if dimM = 2 and depthM > 0. This research is closely related ...

متن کامل

On a special class of Stanley-Reisner ideals

For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where  $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...

متن کامل

The Index of Reducibility of Parameter Ideals and Mostly Zero Finite Local Cohomologies

In this paper we prove that ifM is a finitely-generated module of dimension d with finite local cohomologies over a Noetherian local ring (A,m), and if Him (M) = 0 except possibly for i ∈ {0, r, d} with some 0 ≤ r ≤ d, then there exists an integer l such that every parameter ideal for M contained in m has the same index of reducibility. This theorem generalizes earlier work of the second author...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008